Metamath Proof Explorer


Theorem addresr

Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)

Ref Expression
Assertion addresr A𝑹B𝑹A0𝑹+B0𝑹=A+𝑹B0𝑹

Proof

Step Hyp Ref Expression
1 0r 0𝑹𝑹
2 addcnsr A𝑹0𝑹𝑹B𝑹0𝑹𝑹A0𝑹+B0𝑹=A+𝑹B0𝑹+𝑹0𝑹
3 2 an4s A𝑹B𝑹0𝑹𝑹0𝑹𝑹A0𝑹+B0𝑹=A+𝑹B0𝑹+𝑹0𝑹
4 1 1 3 mpanr12 A𝑹B𝑹A0𝑹+B0𝑹=A+𝑹B0𝑹+𝑹0𝑹
5 0idsr 0𝑹𝑹0𝑹+𝑹0𝑹=0𝑹
6 1 5 ax-mp 0𝑹+𝑹0𝑹=0𝑹
7 6 opeq2i A+𝑹B0𝑹+𝑹0𝑹=A+𝑹B0𝑹
8 4 7 eqtrdi A𝑹B𝑹A0𝑹+B0𝑹=A+𝑹B0𝑹