Metamath Proof Explorer


Theorem addrfn

Description: Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion addrfn ACBDA+rBFn

Proof

Step Hyp Ref Expression
1 ovex Ax+BxV
2 eqid xAx+Bx=xAx+Bx
3 1 2 fnmpti xAx+BxFn
4 addrval ACBDA+rB=xAx+Bx
5 4 fneq1d ACBDA+rBFnxAx+BxFn
6 3 5 mpbiri ACBDA+rBFn