Metamath Proof Explorer


Theorem addscan1

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan1 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) = ( C +s B ) <-> A = B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addscom Could not format ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
2 1 3adant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
3 addscom Could not format ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
4 3 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
5 2 4 eqeq12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( C +s A ) = ( C +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( C +s A ) = ( C +s B ) ) ) with typecode |-
6 addscan2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) ) with typecode |-
7 5 6 bitr3d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) = ( C +s B ) <-> A = B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) = ( C +s B ) <-> A = B ) ) with typecode |-