Metamath Proof Explorer


Theorem addsubsassd

Description: Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025)

Ref Expression
Hypotheses addsubsassd.1 φANo
addsubsassd.2 φBNo
addsubsassd.3 φCNo
Assertion addsubsassd Could not format assertion : No typesetting found for |- ( ph -> ( ( A +s B ) -s C ) = ( A +s ( B -s C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addsubsassd.1 φANo
2 addsubsassd.2 φBNo
3 addsubsassd.3 φCNo
4 3 negscld Could not format ( ph -> ( -us ` C ) e. No ) : No typesetting found for |- ( ph -> ( -us ` C ) e. No ) with typecode |-
5 1 2 4 addsassd Could not format ( ph -> ( ( A +s B ) +s ( -us ` C ) ) = ( A +s ( B +s ( -us ` C ) ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) +s ( -us ` C ) ) = ( A +s ( B +s ( -us ` C ) ) ) ) with typecode |-
6 1 2 addscld Could not format ( ph -> ( A +s B ) e. No ) : No typesetting found for |- ( ph -> ( A +s B ) e. No ) with typecode |-
7 6 3 subsvald Could not format ( ph -> ( ( A +s B ) -s C ) = ( ( A +s B ) +s ( -us ` C ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) -s C ) = ( ( A +s B ) +s ( -us ` C ) ) ) with typecode |-
8 2 3 subsvald Could not format ( ph -> ( B -s C ) = ( B +s ( -us ` C ) ) ) : No typesetting found for |- ( ph -> ( B -s C ) = ( B +s ( -us ` C ) ) ) with typecode |-
9 8 oveq2d Could not format ( ph -> ( A +s ( B -s C ) ) = ( A +s ( B +s ( -us ` C ) ) ) ) : No typesetting found for |- ( ph -> ( A +s ( B -s C ) ) = ( A +s ( B +s ( -us ` C ) ) ) ) with typecode |-
10 5 7 9 3eqtr4d Could not format ( ph -> ( ( A +s B ) -s C ) = ( A +s ( B -s C ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) -s C ) = ( A +s ( B -s C ) ) ) with typecode |-