Metamath Proof Explorer


Theorem afv20defat

Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20defat F''''A=FdefAtA

Proof

Step Hyp Ref Expression
1 ndfatafv2 ¬FdefAtAF''''A=𝒫ranF
2 pwne0 𝒫ranF
3 2 neii ¬𝒫ranF=
4 eqeq1 F''''A=𝒫ranFF''''A=𝒫ranF=
5 3 4 mtbiri F''''A=𝒫ranF¬F''''A=
6 1 5 syl ¬FdefAtA¬F''''A=
7 6 con4i F''''A=FdefAtA