Metamath Proof Explorer


Theorem afv2orxorb

Description: If a set is in the range of a function, the alternate function value at a class A equals this set or is not in the range of the function iff the alternate function value at the class A either equals this set or is not in the range of the function. If B e/ ran F , both disjuncts of the exclusive or can be true: ( F '''' A ) = B -> ( F '''' A ) e/ ran F . (Contributed by AV, 11-Sep-2022)

Ref Expression
Assertion afv2orxorb B ran F F '''' A = B F '''' A ran F F '''' A = B F '''' A ran F

Proof

Step Hyp Ref Expression
1 eleq1 B = F '''' A B ran F F '''' A ran F
2 1 eqcoms F '''' A = B B ran F F '''' A ran F
3 2 biimpa F '''' A = B B ran F F '''' A ran F
4 nnel ¬ F '''' A ran F F '''' A ran F
5 3 4 sylibr F '''' A = B B ran F ¬ F '''' A ran F
6 5 a1d F '''' A = B B ran F F '''' A = B ¬ F '''' A ran F
7 simpl F '''' A = B B ran F F '''' A = B
8 7 a1d F '''' A = B B ran F ¬ F '''' A ran F F '''' A = B
9 6 8 jca F '''' A = B B ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
10 9 ex F '''' A = B B ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
11 eleq1 F '''' A = B F '''' A ran F B ran F
12 11 anbi2d F '''' A = B F '''' A ran F F '''' A ran F F '''' A ran F B ran F
13 elnelall F '''' A ran F F '''' A ran F ¬ F '''' A ran F
14 13 impcom F '''' A ran F F '''' A ran F ¬ F '''' A ran F
15 12 14 syl6bir F '''' A = B F '''' A ran F B ran F ¬ F '''' A ran F
16 15 com12 F '''' A ran F B ran F F '''' A = B ¬ F '''' A ran F
17 pm2.24 F '''' A ran F ¬ F '''' A ran F F '''' A = B
18 17 adantr F '''' A ran F B ran F ¬ F '''' A ran F F '''' A = B
19 16 18 jca F '''' A ran F B ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
20 19 ex F '''' A ran F B ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
21 10 20 jaoi F '''' A = B F '''' A ran F B ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
22 21 com12 B ran F F '''' A = B F '''' A ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
23 df-xor F '''' A = B F '''' A ran F ¬ F '''' A = B F '''' A ran F
24 xor3 ¬ F '''' A = B F '''' A ran F F '''' A = B ¬ F '''' A ran F
25 dfbi2 F '''' A = B ¬ F '''' A ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
26 23 24 25 3bitri F '''' A = B F '''' A ran F F '''' A = B ¬ F '''' A ran F ¬ F '''' A ran F F '''' A = B
27 22 26 syl6ibr B ran F F '''' A = B F '''' A ran F F '''' A = B F '''' A ran F
28 xoror F '''' A = B F '''' A ran F F '''' A = B F '''' A ran F
29 27 28 impbid1 B ran F F '''' A = B F '''' A ran F F '''' A = B F '''' A ran F