Metamath Proof Explorer


Theorem afv2orxorb

Description: If a set is in the range of a function, the alternate function value at a class A equals this set or is not in the range of the function iff the alternate function value at the class A either equals this set or is not in the range of the function. If B e/ ran F , both disjuncts of the exclusive or can be true: ( F '''' A ) = B -> ( F '''' A ) e/ ran F . (Contributed by AV, 11-Sep-2022)

Ref Expression
Assertion afv2orxorb BranFF''''A=BF''''AranFF''''A=BF''''AranF

Proof

Step Hyp Ref Expression
1 eleq1 B=F''''ABranFF''''AranF
2 1 eqcoms F''''A=BBranFF''''AranF
3 2 biimpa F''''A=BBranFF''''AranF
4 nnel ¬F''''AranFF''''AranF
5 3 4 sylibr F''''A=BBranF¬F''''AranF
6 5 a1d F''''A=BBranFF''''A=B¬F''''AranF
7 simpl F''''A=BBranFF''''A=B
8 7 a1d F''''A=BBranF¬F''''AranFF''''A=B
9 6 8 jca F''''A=BBranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
10 9 ex F''''A=BBranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
11 eleq1 F''''A=BF''''AranFBranF
12 11 anbi2d F''''A=BF''''AranFF''''AranFF''''AranFBranF
13 pm2.24nel F''''AranFF''''AranF¬F''''AranF
14 13 impcom F''''AranFF''''AranF¬F''''AranF
15 12 14 syl6bir F''''A=BF''''AranFBranF¬F''''AranF
16 15 com12 F''''AranFBranFF''''A=B¬F''''AranF
17 pm2.24 F''''AranF¬F''''AranFF''''A=B
18 17 adantr F''''AranFBranF¬F''''AranFF''''A=B
19 16 18 jca F''''AranFBranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
20 19 ex F''''AranFBranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
21 10 20 jaoi F''''A=BF''''AranFBranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
22 21 com12 BranFF''''A=BF''''AranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
23 df-xor F''''A=BF''''AranF¬F''''A=BF''''AranF
24 xor3 ¬F''''A=BF''''AranFF''''A=B¬F''''AranF
25 dfbi2 F''''A=B¬F''''AranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
26 23 24 25 3bitri F''''A=BF''''AranFF''''A=B¬F''''AranF¬F''''AranFF''''A=B
27 22 26 syl6ibr BranFF''''A=BF''''AranFF''''A=BF''''AranF
28 xoror F''''A=BF''''AranFF''''A=BF''''AranF
29 27 28 impbid1 BranFF''''A=BF''''AranFF''''A=BF''''AranF