Metamath Proof Explorer


Theorem afvelima

Description: Function value in an image, analogous to fvelima . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelima Fun F A F B x B F ''' x = A

Proof

Step Hyp Ref Expression
1 elimag A F B A F B x B x F A
2 1 ibi A F B x B x F A
3 funbrafv Fun F x F A F ''' x = A
4 3 reximdv Fun F x B x F A x B F ''' x = A
5 2 4 syl5 Fun F A F B x B F ''' x = A
6 5 imp Fun F A F B x B F ''' x = A