Metamath Proof Explorer


Theorem afvfvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the value of the alternative function at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvfvn0fveq F A F ''' A = F A

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 F A A dom F Fun F A
2 df-dfat F defAt A A dom F Fun F A
3 1 2 sylibr F A F defAt A
4 afvfundmfveq F defAt A F ''' A = F A
5 3 4 syl F A F ''' A = F A