Metamath Proof Explorer


Theorem aiota0ndef

Description: Example for an undefined alternate iota being no set, i.e., A. y y e. x is a wff not satisfied by a (unique) value x (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef , where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiota0ndef ι V

Proof

Step Hyp Ref Expression
1 nalset ¬ x y y x
2 1 intnanr ¬ x y y x * x y y x
3 df-eu ∃! x y y x x y y x * x y y x
4 2 3 mtbir ¬ ∃! x y y x
5 df-nel ι V ¬ ι V
6 aiotaexb ∃! x y y x ι V
7 5 6 xchbinxr ι V ¬ ∃! x y y x
8 4 7 mpbir ι V