Metamath Proof Explorer


Theorem aks5lem4a

Description: Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025)

Ref Expression
Hypotheses aks5lema.1 φ K Field
aks5lema.2 P = chr K
aks5lema.3 φ P N P N
aks5lema.9 B = S / 𝑠 S ~ QG L
aks5lema.10 L = RSpan S R mulGrp S var 1 /N - S 1 S
aks5lema.11 φ R
aks5lema.14 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks5lema.15 S = Poly 1 /N
aks5lem4a.7 φ M mulGrp K PrimRoots R
aks5lem4a.12 φ A
aks5lem4a.13 φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L
Assertion aks5lem4a φ N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M

Proof

Step Hyp Ref Expression
1 aks5lema.1 φ K Field
2 aks5lema.2 P = chr K
3 aks5lema.3 φ P N P N
4 aks5lema.9 B = S / 𝑠 S ~ QG L
5 aks5lema.10 L = RSpan S R mulGrp S var 1 /N - S 1 S
6 aks5lema.11 φ R
7 aks5lema.14 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
8 aks5lema.15 S = Poly 1 /N
9 aks5lem4a.7 φ M mulGrp K PrimRoots R
10 aks5lem4a.12 φ A
11 aks5lem4a.13 φ N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L = N mulGrp S var 1 /N + S algSc S ℤRHom /N A S ~ QG L
12 eqid b Base Poly 1 /N a Base /N ℤRHom K a b = b Base Poly 1 /N a Base /N ℤRHom K a b
13 eqid a Base /N ℤRHom K a = a Base /N ℤRHom K a
14 eqid c Base Poly 1 K eval 1 K c M = c Base Poly 1 K eval 1 K c M
15 nfcv _ d c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b e
16 nfcv _ e c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b d
17 imaeq2 e = d c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b e = c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b d
18 17 unieqd e = d c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b e = c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b d
19 15 16 18 cbvmpt e Base B c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b e = d Base B c Base Poly 1 K eval 1 K c M b Base Poly 1 /N a Base /N ℤRHom K a b d
20 1 2 3 4 5 6 7 8 12 13 14 9 19 10 11 aks5lem3a φ N mulGrp K eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A M = eval 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K A N mulGrp K M