Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | alephdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsseleq | |
|
2 | alephord | |
|
3 | sdomdom | |
|
4 | 2 3 | syl6bi | |
5 | fvex | |
|
6 | fveq2 | |
|
7 | eqeng | |
|
8 | 5 6 7 | mpsyl | |
9 | 8 | a1i | |
10 | endom | |
|
11 | 9 10 | syl6 | |
12 | 4 11 | jaod | |
13 | 1 12 | sylbid | |
14 | eloni | |
|
15 | eloni | |
|
16 | ordtri2or | |
|
17 | 14 15 16 | syl2anr | |
18 | 17 | ord | |
19 | 18 | con1d | |
20 | alephord | |
|
21 | 20 | ancoms | |
22 | sdomnen | |
|
23 | sdomdom | |
|
24 | sbth | |
|
25 | 24 | ex | |
26 | 23 25 | syl | |
27 | 22 26 | mtod | |
28 | 21 27 | syl6bi | |
29 | 19 28 | syld | |
30 | 13 29 | impcon4bid | |