Metamath Proof Explorer


Theorem alephdom

Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009)

Ref Expression
Assertion alephdom AOnBOnABAB

Proof

Step Hyp Ref Expression
1 onsseleq AOnBOnABABA=B
2 alephord AOnBOnABAB
3 sdomdom ABAB
4 2 3 syl6bi AOnBOnABAB
5 fvex AV
6 fveq2 A=BA=B
7 eqeng AVA=BAB
8 5 6 7 mpsyl A=BAB
9 8 a1i AOnBOnA=BAB
10 endom ABAB
11 9 10 syl6 AOnBOnA=BAB
12 4 11 jaod AOnBOnABA=BAB
13 1 12 sylbid AOnBOnABAB
14 eloni BOnOrdB
15 eloni AOnOrdA
16 ordtri2or OrdBOrdABAAB
17 14 15 16 syl2anr AOnBOnBAAB
18 17 ord AOnBOn¬BAAB
19 18 con1d AOnBOn¬ABBA
20 alephord BOnAOnBABA
21 20 ancoms AOnBOnBABA
22 sdomnen BA¬BA
23 sdomdom BABA
24 sbth BAABBA
25 24 ex BAABBA
26 23 25 syl BAABBA
27 22 26 mtod BA¬AB
28 21 27 syl6bi AOnBOnBA¬AB
29 19 28 syld AOnBOn¬AB¬AB
30 13 29 impcon4bid AOnBOnABAB