Metamath Proof Explorer


Theorem alephfplem3

Description: Lemma for alephfp . (Contributed by NM, 6-Nov-2004)

Ref Expression
Hypothesis alephfplem.1 H=recωω
Assertion alephfplem3 vωHvran

Proof

Step Hyp Ref Expression
1 alephfplem.1 H=recωω
2 fveq2 v=Hv=H
3 2 eleq1d v=HvranHran
4 fveq2 v=wHv=Hw
5 4 eleq1d v=wHvranHwran
6 fveq2 v=sucwHv=Hsucw
7 6 eleq1d v=sucwHvranHsucwran
8 1 alephfplem1 Hran
9 alephfnon FnOn
10 alephsson ranOn
11 10 sseli HwranHwOn
12 fnfvelrn FnOnHwOnHwran
13 9 11 12 sylancr HwranHwran
14 1 alephfplem2 wωHsucw=Hw
15 14 eleq1d wωHsucwranHwran
16 13 15 imbitrrid wωHwranHsucwran
17 3 5 7 8 16 finds1 vωHvran