Metamath Proof Explorer


Theorem alephlim

Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of Suppes p. 91. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephlim AVLimAA=xAx

Proof

Step Hyp Ref Expression
1 rdglim2a AVLimArecharωA=xArecharωx
2 df-aleph =recharω
3 2 fveq1i A=recharωA
4 2 fveq1i x=recharωx
5 4 a1i xAx=recharωx
6 5 iuneq2i xAx=xArecharωx
7 1 3 6 3eqtr4g AVLimAA=xAx