Metamath Proof Explorer


Theorem alrimii

Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses alrimii.1 y φ
alrimii.2 φ ψ
alrimii.3 [˙y / x]˙ χ ψ
alrimii.4 y χ
Assertion alrimii φ x χ

Proof

Step Hyp Ref Expression
1 alrimii.1 y φ
2 alrimii.2 φ ψ
3 alrimii.3 [˙y / x]˙ χ ψ
4 alrimii.4 y χ
5 2 3 sylibr φ [˙y / x]˙ χ
6 1 5 alrimi φ y [˙y / x]˙ χ
7 nfsbc1v x [˙y / x]˙ χ
8 sbceq2a y = x [˙y / x]˙ χ χ
9 7 4 8 cbvalv1 y [˙y / x]˙ χ x χ
10 6 9 sylib φ x χ