Metamath Proof Explorer


Theorem alrimii

Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses alrimii.1 yφ
alrimii.2 φψ
alrimii.3 [˙y/x]˙χψ
alrimii.4 yχ
Assertion alrimii φxχ

Proof

Step Hyp Ref Expression
1 alrimii.1 yφ
2 alrimii.2 φψ
3 alrimii.3 [˙y/x]˙χψ
4 alrimii.4 yχ
5 2 3 sylibr φ[˙y/x]˙χ
6 1 5 alrimi φy[˙y/x]˙χ
7 nfsbc1v x[˙y/x]˙χ
8 sbceq2a y=x[˙y/x]˙χχ
9 7 4 8 cbvalv1 y[˙y/x]˙χxχ
10 6 9 sylib φxχ