Metamath Proof Explorer


Theorem alscn0d

Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018)

Ref Expression
Hypothesis alscn0d.1 φ ∀! x A ψ
Assertion alscn0d φ A

Proof

Step Hyp Ref Expression
1 alscn0d.1 φ ∀! x A ψ
2 1 alsc2d φ x x A
3 n0 A x x A
4 2 3 sylibr φ A