Metamath Proof Explorer


Theorem alscn0d

Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018)

Ref Expression
Hypothesis alscn0d.1 φ∀!xAψ
Assertion alscn0d φA

Proof

Step Hyp Ref Expression
1 alscn0d.1 φ∀!xAψ
2 1 alsc2d φxxA
3 n0 AxxA
4 2 3 sylibr φA