Metamath Proof Explorer


Theorem alxfr

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 18-Feb-2007)

Ref Expression
Hypothesis alxfr.1 x=Aφψ
Assertion alxfr yABxyx=Axφyψ

Proof

Step Hyp Ref Expression
1 alxfr.1 x=Aφψ
2 1 spcgv ABxφψ
3 2 com12 xφABψ
4 3 alimdv xφyAByψ
5 4 com12 yABxφyψ
6 5 adantr yABxyx=Axφyψ
7 nfa1 yyψ
8 nfv yφ
9 sp yψψ
10 9 1 syl5ibrcom yψx=Aφ
11 7 8 10 exlimd yψyx=Aφ
12 11 alimdv yψxyx=Axφ
13 12 com12 xyx=Ayψxφ
14 13 adantl yABxyx=Ayψxφ
15 6 14 impbid yABxyx=Axφyψ