Metamath Proof Explorer


Theorem an4

Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994)

Ref Expression
Assertion an4 φ ψ χ θ φ χ ψ θ

Proof

Step Hyp Ref Expression
1 anass φ ψ χ θ φ ψ χ θ
2 an12 ψ χ θ χ ψ θ
3 2 bianass φ ψ χ θ φ χ ψ θ
4 1 3 bitri φ ψ χ θ φ χ ψ θ