Metamath Proof Explorer


Theorem anass

Description: Associative law for conjunction. Theorem *4.32 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Assertion anass φψχφψχ

Proof

Step Hyp Ref Expression
1 id φψχφψχ
2 1 anassrs φψχφψχ
3 id φψχφψχ
4 3 anasss φψχφψχ
5 2 4 impbii φψχφψχ