Metamath Proof Explorer


Theorem andiff

Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024)

Ref Expression
Hypotheses andiff.1 φ χ θ
andiff.2 ψ θ χ
Assertion andiff φ ψ χ θ

Proof

Step Hyp Ref Expression
1 andiff.1 φ χ θ
2 andiff.2 ψ θ χ
3 1 2 anim12i φ ψ χ θ θ χ
4 dfbi2 χ θ χ θ θ χ
5 3 4 sylibr φ ψ χ θ