Metamath Proof Explorer


Theorem andiff

Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024)

Ref Expression
Hypotheses andiff.1 φχθ
andiff.2 ψθχ
Assertion andiff φψχθ

Proof

Step Hyp Ref Expression
1 andiff.1 φχθ
2 andiff.2 ψθχ
3 1 2 anim12i φψχθθχ
4 dfbi2 χθχθθχ
5 3 4 sylibr φψχθ