Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Diophantine sets 3: construction
anrabdioph
Next ⟩
orrabdioph
Metamath Proof Explorer
Ascii
Unicode
Theorem
anrabdioph
Description:
Diophantine set builder for conjunctions.
(Contributed by
Stefan O'Rear
, 10-Oct-2014)
Ref
Expression
Assertion
anrabdioph
⊢
t
∈
ℕ
0
1
…
N
|
φ
∈
Dioph
⁡
N
∧
t
∈
ℕ
0
1
…
N
|
ψ
∈
Dioph
⁡
N
→
t
∈
ℕ
0
1
…
N
|
φ
∧
ψ
∈
Dioph
⁡
N
Proof
Step
Hyp
Ref
Expression
1
inrab
⊢
t
∈
ℕ
0
1
…
N
|
φ
∩
t
∈
ℕ
0
1
…
N
|
ψ
=
t
∈
ℕ
0
1
…
N
|
φ
∧
ψ
2
diophin
⊢
t
∈
ℕ
0
1
…
N
|
φ
∈
Dioph
⁡
N
∧
t
∈
ℕ
0
1
…
N
|
ψ
∈
Dioph
⁡
N
→
t
∈
ℕ
0
1
…
N
|
φ
∩
t
∈
ℕ
0
1
…
N
|
ψ
∈
Dioph
⁡
N
3
1
2
eqeltrrid
⊢
t
∈
ℕ
0
1
…
N
|
φ
∈
Dioph
⁡
N
∧
t
∈
ℕ
0
1
…
N
|
ψ
∈
Dioph
⁡
N
→
t
∈
ℕ
0
1
…
N
|
φ
∧
ψ
∈
Dioph
⁡
N