Metamath Proof Explorer


Theorem antisymrelres

Description: (Contributed by Peter Mazsa, 25-Jun-2024)

Ref Expression
Assertion antisymrelres Could not format assertion : No typesetting found for |- ( AntisymRel ( R |` A ) <-> A. x e. A A. y e. A ( ( x R y /\ y R x ) -> x = y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 relres RelRA
2 dfantisymrel5 Could not format ( AntisymRel ( R |` A ) <-> ( A. x A. y ( ( x ( R |` A ) y /\ y ( R |` A ) x ) -> x = y ) /\ Rel ( R |` A ) ) ) : No typesetting found for |- ( AntisymRel ( R |` A ) <-> ( A. x A. y ( ( x ( R |` A ) y /\ y ( R |` A ) x ) -> x = y ) /\ Rel ( R |` A ) ) ) with typecode |-
3 1 2 mpbiran2 Could not format ( AntisymRel ( R |` A ) <-> A. x A. y ( ( x ( R |` A ) y /\ y ( R |` A ) x ) -> x = y ) ) : No typesetting found for |- ( AntisymRel ( R |` A ) <-> A. x A. y ( ( x ( R |` A ) y /\ y ( R |` A ) x ) -> x = y ) ) with typecode |-
4 brres yVxRAyxAxRy
5 4 elv xRAyxAxRy
6 brres xVyRAxyAyRx
7 6 elv yRAxyAyRx
8 5 7 anbi12i xRAyyRAxxAxRyyAyRx
9 an4 xAxRyyAyRxxAyAxRyyRx
10 8 9 bitri xRAyyRAxxAyAxRyyRx
11 10 imbi1i xRAyyRAxx=yxAyAxRyyRxx=y
12 11 2albii xyxRAyyRAxx=yxyxAyAxRyyRxx=y
13 r2alan xyxAyAxRyyRxx=yxAyAxRyyRxx=y
14 3 12 13 3bitri Could not format ( AntisymRel ( R |` A ) <-> A. x e. A A. y e. A ( ( x R y /\ y R x ) -> x = y ) ) : No typesetting found for |- ( AntisymRel ( R |` A ) <-> A. x e. A A. y e. A ( ( x R y /\ y R x ) -> x = y ) ) with typecode |-