Metamath Proof Explorer


Theorem assaascl0

Description: The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses assaascl0.a A = algSc W
assaascl0.f F = Scalar W
assaascl0.w φ W AssAlg
Assertion assaascl0 φ A 0 F = 0 W

Proof

Step Hyp Ref Expression
1 assaascl0.a A = algSc W
2 assaascl0.f F = Scalar W
3 assaascl0.w φ W AssAlg
4 assalmod W AssAlg W LMod
5 3 4 syl φ W LMod
6 assaring W AssAlg W Ring
7 3 6 syl φ W Ring
8 1 2 5 7 ascl0 φ A 0 F = 0 W