Metamath Proof Explorer


Theorem assaascl0

Description: The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses assaascl0.a A=algScW
assaascl0.f F=ScalarW
assaascl0.w φWAssAlg
Assertion assaascl0 φA0F=0W

Proof

Step Hyp Ref Expression
1 assaascl0.a A=algScW
2 assaascl0.f F=ScalarW
3 assaascl0.w φWAssAlg
4 assalmod WAssAlgWLMod
5 3 4 syl φWLMod
6 assaring WAssAlgWRing
7 3 6 syl φWRing
8 1 2 5 7 ascl0 φA0F=0W