Metamath Proof Explorer


Theorem atansopn

Description: The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D=−∞0
atansopn.s S=y|1+y2D
Assertion atansopn STopOpenfld

Proof

Step Hyp Ref Expression
1 atansopn.d D=−∞0
2 atansopn.s S=y|1+y2D
3 eqid y1+y2=y1+y2
4 3 mptpreima y1+y2-1D=y|1+y2D
5 2 4 eqtr4i S=y1+y2-1D
6 eqid TopOpenfld=TopOpenfld
7 6 cnfldtopon TopOpenfldTopOn
8 7 a1i TopOpenfldTopOn
9 1cnd 1
10 8 8 9 cnmptc y1TopOpenfldCnTopOpenfld
11 2nn0 20
12 6 expcn 20yy2TopOpenfldCnTopOpenfld
13 11 12 mp1i yy2TopOpenfldCnTopOpenfld
14 6 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
15 14 a1i +TopOpenfld×tTopOpenfldCnTopOpenfld
16 8 10 13 15 cnmpt12f y1+y2TopOpenfldCnTopOpenfld
17 16 mptru y1+y2TopOpenfldCnTopOpenfld
18 1 logdmopn DTopOpenfld
19 cnima y1+y2TopOpenfldCnTopOpenfldDTopOpenfldy1+y2-1DTopOpenfld
20 17 18 19 mp2an y1+y2-1DTopOpenfld
21 5 20 eqeltri STopOpenfld