Metamath Proof Explorer


Theorem atcvrj1

Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atcvrj1x.l ˙=K
atcvrj1x.j ˙=joinK
atcvrj1x.c C=K
atcvrj1x.a A=AtomsK
Assertion atcvrj1 KHLPAQARAPRP˙Q˙RPCQ˙R

Proof

Step Hyp Ref Expression
1 atcvrj1x.l ˙=K
2 atcvrj1x.j ˙=joinK
3 atcvrj1x.c C=K
4 atcvrj1x.a A=AtomsK
5 simp3l KHLPAQARAPRP˙Q˙RPR
6 hlatl KHLKAtLat
7 6 3ad2ant1 KHLPAQARAPRP˙Q˙RKAtLat
8 simp21 KHLPAQARAPRP˙Q˙RPA
9 simp23 KHLPAQARAPRP˙Q˙RRA
10 eqid meetK=meetK
11 eqid 0.K=0.K
12 10 11 4 atnem0 KAtLatPARAPRPmeetKR=0.K
13 7 8 9 12 syl3anc KHLPAQARAPRP˙Q˙RPRPmeetKR=0.K
14 5 13 mpbid KHLPAQARAPRP˙Q˙RPmeetKR=0.K
15 simp1 KHLPAQARAPRP˙Q˙RKHL
16 eqid BaseK=BaseK
17 16 4 atbase PAPBaseK
18 8 17 syl KHLPAQARAPRP˙Q˙RPBaseK
19 16 2 10 11 3 4 cvrp KHLPBaseKRAPmeetKR=0.KPCP˙R
20 15 18 9 19 syl3anc KHLPAQARAPRP˙Q˙RPmeetKR=0.KPCP˙R
21 14 20 mpbid KHLPAQARAPRP˙Q˙RPCP˙R
22 simp3r KHLPAQARAPRP˙Q˙RP˙Q˙R
23 1 2 4 hlatexchb2 KHLPAQARAPRP˙Q˙RP˙R=Q˙R
24 23 3adant3r KHLPAQARAPRP˙Q˙RP˙Q˙RP˙R=Q˙R
25 22 24 mpbid KHLPAQARAPRP˙Q˙RP˙R=Q˙R
26 21 25 breqtrd KHLPAQARAPRP˙Q˙RPCQ˙R