Metamath Proof Explorer


Theorem atcvrneN

Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atcvrne.j ˙=joinK
atcvrne.c C=K
atcvrne.a A=AtomsK
Assertion atcvrneN KHLPAQARAPCQ˙RQR

Proof

Step Hyp Ref Expression
1 atcvrne.j ˙=joinK
2 atcvrne.c C=K
3 atcvrne.a A=AtomsK
4 hlatl KHLKAtLat
5 4 3ad2ant1 KHLPAQARAPCQ˙RKAtLat
6 simp21 KHLPAQARAPCQ˙RPA
7 eqid 0.K=0.K
8 7 3 atn0 KAtLatPAP0.K
9 5 6 8 syl2anc KHLPAQARAPCQ˙RP0.K
10 simp1 KHLPAQARAPCQ˙RKHL
11 eqid BaseK=BaseK
12 11 3 atbase PAPBaseK
13 6 12 syl KHLPAQARAPCQ˙RPBaseK
14 simp22 KHLPAQARAPCQ˙RQA
15 simp23 KHLPAQARAPCQ˙RRA
16 simp3 KHLPAQARAPCQ˙RPCQ˙R
17 11 1 7 2 3 atcvrj0 KHLPBaseKQARAPCQ˙RP=0.KQ=R
18 10 13 14 15 16 17 syl131anc KHLPAQARAPCQ˙RP=0.KQ=R
19 18 necon3bid KHLPAQARAPCQ˙RP0.KQR
20 9 19 mpbid KHLPAQARAPCQ˙RQR