Metamath Proof Explorer


Theorem atexchltN

Description: Atom exchange property. Version of hlatexch2 with less-than ordering. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atexchlt.s <˙=<K
atexchlt.j ˙=joinK
atexchlt.a A=AtomsK
Assertion atexchltN KHLPAQARAPRP<˙Q˙RQ<˙P˙R

Proof

Step Hyp Ref Expression
1 atexchlt.s <˙=<K
2 atexchlt.j ˙=joinK
3 atexchlt.a A=AtomsK
4 eqid K=K
5 2 3 4 atexchcvrN KHLPAQARAPRPKQ˙RQKP˙R
6 1 2 3 4 atltcvr KHLPAQARAP<˙Q˙RPKQ˙R
7 6 3adant3 KHLPAQARAPRP<˙Q˙RPKQ˙R
8 simpl KHLPAQARAKHL
9 simpr2 KHLPAQARAQA
10 simpr1 KHLPAQARAPA
11 simpr3 KHLPAQARARA
12 1 2 3 4 atltcvr KHLQAPARAQ<˙P˙RQKP˙R
13 8 9 10 11 12 syl13anc KHLPAQARAQ<˙P˙RQKP˙R
14 13 3adant3 KHLPAQARAPRQ<˙P˙RQKP˙R
15 5 7 14 3imtr4d KHLPAQARAPRP<˙Q˙RQ<˙P˙R