Metamath Proof Explorer


Theorem atexchltN

Description: Atom exchange property. Version of hlatexch2 with less-than ordering. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atexchlt.s
|- .< = ( lt ` K )
atexchlt.j
|- .\/ = ( join ` K )
atexchlt.a
|- A = ( Atoms ` K )
Assertion atexchltN
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .< ( Q .\/ R ) -> Q .< ( P .\/ R ) ) )

Proof

Step Hyp Ref Expression
1 atexchlt.s
 |-  .< = ( lt ` K )
2 atexchlt.j
 |-  .\/ = ( join ` K )
3 atexchlt.a
 |-  A = ( Atoms ` K )
4 eqid
 |-  ( 
5 2 3 4 atexchcvrN
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P (  Q ( 
6 1 2 3 4 atltcvr
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P .< ( Q .\/ R ) <-> P ( 
7 6 3adant3
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .< ( Q .\/ R ) <-> P ( 
8 simpl
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. HL )
9 simpr2
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> Q e. A )
10 simpr1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. A )
11 simpr3
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. A )
12 1 2 3 4 atltcvr
 |-  ( ( K e. HL /\ ( Q e. A /\ P e. A /\ R e. A ) ) -> ( Q .< ( P .\/ R ) <-> Q ( 
13 8 9 10 11 12 syl13anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( Q .< ( P .\/ R ) <-> Q ( 
14 13 3adant3
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( Q .< ( P .\/ R ) <-> Q ( 
15 5 7 14 3imtr4d
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .< ( Q .\/ R ) -> Q .< ( P .\/ R ) ) )