Metamath Proof Explorer


Theorem atexchltN

Description: Atom exchange property. Version of hlatexch2 with less-than ordering. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atexchlt.s < = ( lt ‘ 𝐾 )
atexchlt.j = ( join ‘ 𝐾 )
atexchlt.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atexchltN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 < ( 𝑄 𝑅 ) → 𝑄 < ( 𝑃 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 atexchlt.s < = ( lt ‘ 𝐾 )
2 atexchlt.j = ( join ‘ 𝐾 )
3 atexchlt.a 𝐴 = ( Atoms ‘ 𝐾 )
4 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
5 2 3 4 atexchcvrN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 𝑅 ) → 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑅 ) ) )
6 1 2 3 4 atltcvr ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( 𝑃 < ( 𝑄 𝑅 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 𝑅 ) ) )
7 6 3adant3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 < ( 𝑄 𝑅 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 𝑅 ) ) )
8 simpl ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝐾 ∈ HL )
9 simpr2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑄𝐴 )
10 simpr1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑃𝐴 )
11 simpr3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑅𝐴 )
12 1 2 3 4 atltcvr ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑃𝐴𝑅𝐴 ) ) → ( 𝑄 < ( 𝑃 𝑅 ) ↔ 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑅 ) ) )
13 8 9 10 11 12 syl13anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( 𝑄 < ( 𝑃 𝑅 ) ↔ 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑅 ) ) )
14 13 3adant3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑄 < ( 𝑃 𝑅 ) ↔ 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑅 ) ) )
15 5 7 14 3imtr4d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 < ( 𝑄 𝑅 ) → 𝑄 < ( 𝑃 𝑅 ) ) )