Step |
Hyp |
Ref |
Expression |
1 |
|
atltcvr.s |
⊢ < = ( lt ‘ 𝐾 ) |
2 |
|
atltcvr.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
atltcvr.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
atltcvr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
|
oveq1 |
⊢ ( 𝑄 = 𝑅 → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑅 ) ) |
6 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
7 |
2 3
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑅 ) = 𝑅 ) |
8 |
6 7
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑅 ∨ 𝑅 ) = 𝑅 ) |
9 |
5 8
|
sylan9eqr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 = 𝑅 ) → ( 𝑄 ∨ 𝑅 ) = 𝑅 ) |
10 |
9
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 = 𝑅 ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 < 𝑅 ) ) |
11 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
12 |
11
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
13 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
14 |
1 3
|
atnlt |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ¬ 𝑃 < 𝑅 ) |
15 |
12 13 6 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ¬ 𝑃 < 𝑅 ) |
16 |
15
|
pm2.21d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 < 𝑅 → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 = 𝑅 ) → ( 𝑃 < 𝑅 → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |
18 |
10 17
|
sylbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 = 𝑅 ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
20 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
21 |
20
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
22 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
24 |
23 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
25 |
22 24
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
26 |
23 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
27 |
6 26
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
28 |
23 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
21 25 27 28
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
31 |
30 1
|
pltle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) |
32 |
19 13 29 31
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) |
34 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ HL ) |
35 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) |
37 |
34 35 36
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) ) |
38 |
37
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) → ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) ) |
39 |
30 2 4 3
|
atcvrj2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) |
40 |
38 39
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 ≠ 𝑅 ) ∧ 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) |
41 |
40
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |
42 |
33 41
|
syld |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ 𝑄 ≠ 𝑅 ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |
43 |
18 42
|
pm2.61dane |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |
44 |
23 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
45 |
13 44
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
46 |
23 1 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) → 𝑃 < ( 𝑄 ∨ 𝑅 ) ) |
47 |
46
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) → 𝑃 < ( 𝑄 ∨ 𝑅 ) ) ) |
48 |
19 45 29 47
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) → 𝑃 < ( 𝑄 ∨ 𝑅 ) ) ) |
49 |
43 48
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 𝐶 ( 𝑄 ∨ 𝑅 ) ) ) |