Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
atn0
Next ⟩
atnle0
Metamath Proof Explorer
Ascii
Unicode
Theorem
atn0
Description:
An atom is not zero. (
atne0
analog.)
(Contributed by
NM
, 5-Nov-2012)
Ref
Expression
Hypotheses
atne0.z
⊢
0
˙
=
0.
⁡
K
atne0.a
⊢
A
=
Atoms
⁡
K
Assertion
atn0
⊢
K
∈
AtLat
∧
P
∈
A
→
P
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
atne0.z
⊢
0
˙
=
0.
⁡
K
2
atne0.a
⊢
A
=
Atoms
⁡
K
3
eqid
⊢
Base
K
=
Base
K
4
eqid
⊢
≤
K
=
≤
K
5
3
4
1
2
isat3
⊢
K
∈
AtLat
→
P
∈
A
↔
P
∈
Base
K
∧
P
≠
0
˙
∧
∀
x
∈
Base
K
x
≤
K
P
→
x
=
P
∨
x
=
0
˙
6
simp2
⊢
P
∈
Base
K
∧
P
≠
0
˙
∧
∀
x
∈
Base
K
x
≤
K
P
→
x
=
P
∨
x
=
0
˙
→
P
≠
0
˙
7
5
6
biimtrdi
⊢
K
∈
AtLat
→
P
∈
A
→
P
≠
0
˙
8
7
imp
⊢
K
∈
AtLat
∧
P
∈
A
→
P
≠
0
˙