Metamath Proof Explorer


Theorem atn0

Description: An atom is not zero. ( atne0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atne0.z 0˙=0.K
atne0.a A=AtomsK
Assertion atn0 KAtLatPAP0˙

Proof

Step Hyp Ref Expression
1 atne0.z 0˙=0.K
2 atne0.a A=AtomsK
3 eqid BaseK=BaseK
4 eqid K=K
5 3 4 1 2 isat3 KAtLatPAPBaseKP0˙xBaseKxKPx=Px=0˙
6 simp2 PBaseKP0˙xBaseKxKPx=Px=0˙P0˙
7 5 6 syl6bi KAtLatPAP0˙
8 7 imp KAtLatPAP0˙