Metamath Proof Explorer


Theorem avgle

Description: The average of two numbers is less than or equal to at least one of them. (Contributed by NM, 9-Dec-2005) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avgle ABA+B2AA+B2B

Proof

Step Hyp Ref Expression
1 letric ABABBA
2 1 orcomd ABBAAB
3 avgle2 BABAB+A2A
4 3 ancoms ABBAB+A2A
5 recn AA
6 recn BB
7 addcom ABA+B=B+A
8 5 6 7 syl2an ABA+B=B+A
9 8 oveq1d ABA+B2=B+A2
10 9 breq1d ABA+B2AB+A2A
11 4 10 bitr4d ABBAA+B2A
12 avgle2 ABABA+B2B
13 11 12 orbi12d ABBAABA+B2AA+B2B
14 2 13 mpbid ABA+B2AA+B2B