Description: Lemma for ax5seg . Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 . (Contributed by Scott Fenton, 11-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ax5seglem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | oveq1d | |
3 | 2 | oveq1d | |
4 | 3 | oveq1d | |
5 | oveq1 | |
|
6 | 5 | oveq1d | |
7 | 6 | oveq2d | |
8 | oveq1 | |
|
9 | 8 | oveq1d | |
10 | 7 9 | oveq12d | |
11 | 10 | oveq2d | |
12 | 4 11 | oveq12d | |
13 | 12 | eqeq2d | |
14 | oveq1 | |
|
15 | oveq2 | |
|
16 | 15 | oveq1d | |
17 | oveq1 | |
|
18 | 16 17 | oveq12d | |
19 | 18 | oveq1d | |
20 | 19 | oveq1d | |
21 | oveq1 | |
|
22 | 21 | oveq1d | |
23 | 15 22 | oveq12d | |
24 | 20 23 | oveq12d | |
25 | 14 24 | eqeq12d | |
26 | oveq1 | |
|
27 | 26 | oveq1d | |
28 | 27 | oveq2d | |
29 | oveq2 | |
|
30 | 29 | oveq2d | |
31 | 30 | oveq1d | |
32 | 31 | oveq1d | |
33 | oveq2 | |
|
34 | 33 | oveq1d | |
35 | 34 | oveq2d | |
36 | 35 | oveq1d | |
37 | 36 | oveq2d | |
38 | 32 37 | oveq12d | |
39 | 28 38 | eqeq12d | |
40 | oveq2 | |
|
41 | 40 | oveq1d | |
42 | 41 | oveq2d | |
43 | oveq2 | |
|
44 | 43 | oveq1d | |
45 | oveq2 | |
|
46 | 45 | oveq1d | |
47 | 46 | oveq2d | |
48 | 47 | oveq2d | |
49 | 44 48 | oveq12d | |
50 | 42 49 | eqeq12d | |
51 | 0cn | |
|
52 | 51 | elimel | |
53 | 51 | elimel | |
54 | 51 | elimel | |
55 | 51 | elimel | |
56 | 52 53 54 55 | ax5seglem7 | |
57 | 13 25 39 50 56 | dedth4h | |