Step |
Hyp |
Ref |
Expression |
1 |
|
simprll |
|
2 |
1
|
ad2antrr |
|
3 |
|
fveecn |
|
4 |
2 3
|
sylancom |
|
5 |
|
elicc01 |
|
6 |
5
|
simp1bi |
|
7 |
6
|
recnd |
|
8 |
7
|
ad2antrl |
|
9 |
8
|
adantr |
|
10 |
|
simprrl |
|
11 |
10
|
ad2antrr |
|
12 |
|
fveecn |
|
13 |
11 12
|
sylancom |
|
14 |
|
simprrr |
|
15 |
14
|
ad2antrr |
|
16 |
|
fveecn |
|
17 |
15 16
|
sylancom |
|
18 |
|
fveq2 |
|
19 |
|
fveq2 |
|
20 |
19
|
oveq2d |
|
21 |
|
fveq2 |
|
22 |
21
|
oveq2d |
|
23 |
20 22
|
oveq12d |
|
24 |
18 23
|
eqeq12d |
|
25 |
24
|
rspccva |
|
26 |
25
|
adantll |
|
27 |
26
|
adantll |
|
28 |
|
ax5seglem8 |
|
29 |
|
oveq1 |
|
30 |
29
|
oveq1d |
|
31 |
30
|
oveq1d |
|
32 |
31
|
eqcomd |
|
33 |
28 32
|
sylan9eq |
|
34 |
33
|
3impa |
|
35 |
4 9 13 17 27 34
|
syl221anc |
|
36 |
35
|
sumeq2dv |
|
37 |
|
fzfid |
|
38 |
13 17
|
subcld |
|
39 |
38
|
sqcld |
|
40 |
37 8 39
|
fsummulc2 |
|
41 |
4 13
|
subcld |
|
42 |
41
|
sqcld |
|
43 |
37 8 42
|
fsummulc2 |
|
44 |
43
|
oveq1d |
|
45 |
9 42
|
mulcld |
|
46 |
4 17
|
subcld |
|
47 |
46
|
sqcld |
|
48 |
37 45 47
|
fsumsub |
|
49 |
44 48
|
eqtr4d |
|
50 |
49
|
oveq2d |
|
51 |
|
ax-1cn |
|
52 |
|
subcl |
|
53 |
51 8 52
|
sylancr |
|
54 |
45 47
|
subcld |
|
55 |
37 53 54
|
fsummulc2 |
|
56 |
50 55
|
eqtrd |
|
57 |
56
|
oveq2d |
|
58 |
|
simprlr |
|
59 |
58
|
ad2antrr |
|
60 |
|
fveecn |
|
61 |
59 60
|
sylancom |
|
62 |
61 17
|
subcld |
|
63 |
62
|
sqcld |
|
64 |
51 9 52
|
sylancr |
|
65 |
64 54
|
mulcld |
|
66 |
37 63 65
|
fsumadd |
|
67 |
57 66
|
eqtr4d |
|
68 |
36 40 67
|
3eqtr4d |
|