Step |
Hyp |
Ref |
Expression |
1 |
|
simprll |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) |
2 |
1
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> A e. ( EE ` N ) ) |
3 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) |
4 |
2 3
|
sylancom |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) |
5 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
6 |
5
|
simp1bi |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
7 |
6
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> T e. CC ) |
8 |
7
|
ad2antrl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> T e. CC ) |
9 |
8
|
adantr |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> T e. CC ) |
10 |
|
simprrl |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) |
11 |
10
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> C e. ( EE ` N ) ) |
12 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) |
13 |
11 12
|
sylancom |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) |
14 |
|
simprrr |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> D e. ( EE ` N ) ) |
15 |
14
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> D e. ( EE ` N ) ) |
16 |
|
fveecn |
|- ( ( D e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( D ` j ) e. CC ) |
17 |
15 16
|
sylancom |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( D ` j ) e. CC ) |
18 |
|
fveq2 |
|- ( i = j -> ( B ` i ) = ( B ` j ) ) |
19 |
|
fveq2 |
|- ( i = j -> ( A ` i ) = ( A ` j ) ) |
20 |
19
|
oveq2d |
|- ( i = j -> ( ( 1 - T ) x. ( A ` i ) ) = ( ( 1 - T ) x. ( A ` j ) ) ) |
21 |
|
fveq2 |
|- ( i = j -> ( C ` i ) = ( C ` j ) ) |
22 |
21
|
oveq2d |
|- ( i = j -> ( T x. ( C ` i ) ) = ( T x. ( C ` j ) ) ) |
23 |
20 22
|
oveq12d |
|- ( i = j -> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) |
24 |
18 23
|
eqeq12d |
|- ( i = j -> ( ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) <-> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) ) |
25 |
24
|
rspccva |
|- ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) |
26 |
25
|
adantll |
|- ( ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) |
27 |
26
|
adantll |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) |
28 |
|
ax5seglem8 |
|- ( ( ( ( A ` j ) e. CC /\ T e. CC ) /\ ( ( C ` j ) e. CC /\ ( D ` j ) e. CC ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
29 |
|
oveq1 |
|- ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( B ` j ) - ( D ` j ) ) = ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ) |
30 |
29
|
oveq1d |
|- ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) = ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) ) |
31 |
30
|
oveq1d |
|- ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
32 |
31
|
eqcomd |
|- ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
33 |
28 32
|
sylan9eq |
|- ( ( ( ( ( A ` j ) e. CC /\ T e. CC ) /\ ( ( C ` j ) e. CC /\ ( D ` j ) e. CC ) ) /\ ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
34 |
33
|
3impa |
|- ( ( ( ( A ` j ) e. CC /\ T e. CC ) /\ ( ( C ` j ) e. CC /\ ( D ` j ) e. CC ) /\ ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
35 |
4 9 13 17 27 34
|
syl221anc |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
36 |
35
|
sumeq2dv |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
37 |
|
fzfid |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( 1 ... N ) e. Fin ) |
38 |
13 17
|
subcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( C ` j ) - ( D ` j ) ) e. CC ) |
39 |
38
|
sqcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) e. CC ) |
40 |
37 8 39
|
fsummulc2 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( T x. sum_ j e. ( 1 ... N ) ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) ) |
41 |
4 13
|
subcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) |
42 |
41
|
sqcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) |
43 |
37 8 42
|
fsummulc2 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
44 |
43
|
oveq1d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) = ( sum_ j e. ( 1 ... N ) ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) |
45 |
9 42
|
mulcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) e. CC ) |
46 |
4 17
|
subcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( D ` j ) ) e. CC ) |
47 |
46
|
sqcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) e. CC ) |
48 |
37 45 47
|
fsumsub |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) = ( sum_ j e. ( 1 ... N ) ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) |
49 |
44 48
|
eqtr4d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) |
50 |
49
|
oveq2d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) = ( ( 1 - T ) x. sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) |
51 |
|
ax-1cn |
|- 1 e. CC |
52 |
|
subcl |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
53 |
51 8 52
|
sylancr |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( 1 - T ) e. CC ) |
54 |
45 47
|
subcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) e. CC ) |
55 |
37 53 54
|
fsummulc2 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) x. sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) = sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) |
56 |
50 55
|
eqtrd |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) = sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) |
57 |
56
|
oveq2d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
58 |
|
simprlr |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> B e. ( EE ` N ) ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> B e. ( EE ` N ) ) |
60 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) e. CC ) |
61 |
59 60
|
sylancom |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) e. CC ) |
62 |
61 17
|
subcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( B ` j ) - ( D ` j ) ) e. CC ) |
63 |
62
|
sqcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) e. CC ) |
64 |
51 9 52
|
sylancr |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( 1 - T ) e. CC ) |
65 |
64 54
|
mulcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) e. CC ) |
66 |
37 63 65
|
fsumadd |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
67 |
57 66
|
eqtr4d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = sum_ j e. ( 1 ... N ) ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |
68 |
36 40 67
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( T x. sum_ j e. ( 1 ... N ) ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |