| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprll |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> A e. ( EE ` N ) ) | 
						
							| 3 |  | fveecn |  |-  ( ( A e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 4 | 2 3 | sylancom |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 5 |  | elicc01 |  |-  ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) | 
						
							| 6 | 5 | simp1bi |  |-  ( T e. ( 0 [,] 1 ) -> T e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( T e. ( 0 [,] 1 ) -> T e. CC ) | 
						
							| 8 | 7 | ad2antrl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> T e. CC ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> T e. CC ) | 
						
							| 10 |  | simprrl |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> C e. ( EE ` N ) ) | 
						
							| 12 |  | fveecn |  |-  ( ( C e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 13 | 11 12 | sylancom |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 14 |  | simprrr |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 15 | 14 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> D e. ( EE ` N ) ) | 
						
							| 16 |  | fveecn |  |-  ( ( D e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( D ` j ) e. CC ) | 
						
							| 17 | 15 16 | sylancom |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( D ` j ) e. CC ) | 
						
							| 18 |  | fveq2 |  |-  ( i = j -> ( B ` i ) = ( B ` j ) ) | 
						
							| 19 |  | fveq2 |  |-  ( i = j -> ( A ` i ) = ( A ` j ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( i = j -> ( ( 1 - T ) x. ( A ` i ) ) = ( ( 1 - T ) x. ( A ` j ) ) ) | 
						
							| 21 |  | fveq2 |  |-  ( i = j -> ( C ` i ) = ( C ` j ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( i = j -> ( T x. ( C ` i ) ) = ( T x. ( C ` j ) ) ) | 
						
							| 23 | 20 22 | oveq12d |  |-  ( i = j -> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 24 | 18 23 | eqeq12d |  |-  ( i = j -> ( ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) <-> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) ) | 
						
							| 25 | 24 | rspccva |  |-  ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 26 | 25 | adantll |  |-  ( ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 27 | 26 | adantll |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 28 |  | ax5seglem8 |  |-  ( ( ( ( A ` j ) e. CC /\ T e. CC ) /\ ( ( C ` j ) e. CC /\ ( D ` j ) e. CC ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 29 |  | oveq1 |  |-  ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( B ` j ) - ( D ` j ) ) = ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) = ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 32 | 31 | eqcomd |  |-  ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 33 | 28 32 | sylan9eq |  |-  ( ( ( ( ( A ` j ) e. CC /\ T e. CC ) /\ ( ( C ` j ) e. CC /\ ( D ` j ) e. CC ) ) /\ ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 34 | 33 | 3impa |  |-  ( ( ( ( A ` j ) e. CC /\ T e. CC ) /\ ( ( C ` j ) e. CC /\ ( D ` j ) e. CC ) /\ ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 35 | 4 9 13 17 27 34 | syl221anc |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 36 | 35 | sumeq2dv |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 37 |  | fzfid |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 38 | 13 17 | subcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( C ` j ) - ( D ` j ) ) e. CC ) | 
						
							| 39 | 38 | sqcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) e. CC ) | 
						
							| 40 | 37 8 39 | fsummulc2 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( T x. sum_ j e. ( 1 ... N ) ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( T x. ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) ) | 
						
							| 41 | 4 13 | subcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) | 
						
							| 42 | 41 | sqcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) | 
						
							| 43 | 37 8 42 | fsummulc2 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) = ( sum_ j e. ( 1 ... N ) ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) | 
						
							| 45 | 9 42 | mulcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) e. CC ) | 
						
							| 46 | 4 17 | subcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( D ` j ) ) e. CC ) | 
						
							| 47 | 46 | sqcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) e. CC ) | 
						
							| 48 | 37 45 47 | fsumsub |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) = ( sum_ j e. ( 1 ... N ) ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) | 
						
							| 49 | 44 48 | eqtr4d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) = ( ( 1 - T ) x. sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) | 
						
							| 51 |  | ax-1cn |  |-  1 e. CC | 
						
							| 52 |  | subcl |  |-  ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) | 
						
							| 53 | 51 8 52 | sylancr |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( 1 - T ) e. CC ) | 
						
							| 54 | 45 47 | subcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) e. CC ) | 
						
							| 55 | 37 53 54 | fsummulc2 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) x. sum_ j e. ( 1 ... N ) ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) = sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) | 
						
							| 56 | 50 55 | eqtrd |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) = sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 58 |  | simprlr |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 59 | 58 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> B e. ( EE ` N ) ) | 
						
							| 60 |  | fveecn |  |-  ( ( B e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) e. CC ) | 
						
							| 61 | 59 60 | sylancom |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) e. CC ) | 
						
							| 62 | 61 17 | subcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( B ` j ) - ( D ` j ) ) e. CC ) | 
						
							| 63 | 62 | sqcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) e. CC ) | 
						
							| 64 | 51 9 52 | sylancr |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( 1 - T ) e. CC ) | 
						
							| 65 | 64 54 | mulcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) e. CC ) | 
						
							| 66 | 37 63 65 | fsumadd |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + sum_ j e. ( 1 ... N ) ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 67 | 57 66 | eqtr4d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) = sum_ j e. ( 1 ... N ) ( ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) | 
						
							| 68 | 36 40 67 | 3eqtr4d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( T x. sum_ j e. ( 1 ... N ) ( ( ( C ` j ) - ( D ` j ) ) ^ 2 ) ) = ( sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( D ` j ) ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) - sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( D ` j ) ) ^ 2 ) ) ) ) ) |