Metamath Proof Explorer


Theorem axccd2

Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses axccd2.1 φAω
axccd2.2 φxAx
Assertion axccd2 φfxAfxx

Proof

Step Hyp Ref Expression
1 axccd2.1 φAω
2 axccd2.2 φxAx
3 isfinite2 AωAFin
4 3 adantl φAωAFin
5 simpr φAωxAxA
6 2 adantlr φAωxAx
7 4 5 6 choicefi φAωffFnAxAfxx
8 simpr fFnAxAfxxxAfxx
9 8 a1i φAωfFnAxAfxxxAfxx
10 9 eximdv φAωffFnAxAfxxfxAfxx
11 7 10 mpd φAωfxAfxx
12 1 anim1i φ¬AωAω¬Aω
13 bren2 AωAω¬Aω
14 12 13 sylibr φ¬AωAω
15 simpr φAωAω
16 2 adantlr φAωxAx
17 15 16 axccd φAωfxAfxx
18 14 17 syldan φ¬AωfxAfxx
19 11 18 pm2.61dan φfxAfxx