Description: This theorem derives ax-dc using ax-ac and ax-inf . Thus,AC impliesDC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axdc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |
|
2 | 1 | cbvabv | |
3 | breq1 | |
|
4 | 3 | abbidv | |
5 | 2 4 | eqtrid | |
6 | 5 | fveq2d | |
7 | 6 | cbvmptv | |
8 | rdgeq1 | |
|
9 | reseq1 | |
|
10 | 7 8 9 | mp2b | |
11 | 10 | axdclem2 | |
12 | 11 | exlimiv | |
13 | 12 | imp | |