Metamath Proof Explorer


Theorem axdc

Description: This theorem derives ax-dc using ax-ac and ax-inf . Thus,AC impliesDC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Assertion axdc yzyxzranxdomxfnωfnxfsucn

Proof

Step Hyp Ref Expression
1 breq2 w=zuxwuxz
2 1 cbvabv w|uxw=z|uxz
3 breq1 u=vuxzvxz
4 3 abbidv u=vz|uxz=z|vxz
5 2 4 eqtrid u=vw|uxw=z|vxz
6 5 fveq2d u=vgw|uxw=gz|vxz
7 6 cbvmptv uVgw|uxw=vVgz|vxz
8 rdgeq1 uVgw|uxw=vVgz|vxzrecuVgw|uxwy=recvVgz|vxzy
9 reseq1 recuVgw|uxwy=recvVgz|vxzyrecuVgw|uxwyω=recvVgz|vxzyω
10 7 8 9 mp2b recuVgw|uxwyω=recvVgz|vxzyω
11 10 axdclem2 zyxzranxdomxfnωfnxfsucn
12 11 exlimiv yzyxzranxdomxfnωfnxfsucn
13 12 imp yzyxzranxdomxfnωfnxfsucn