Metamath Proof Explorer


Theorem axltadd

Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axltadd ABCA<BC+A<C+B

Proof

Step Hyp Ref Expression
1 ax-pre-ltadd ABCA<BC+A<C+B
2 ltxrlt ABA<BA<B
3 2 3adant3 ABCA<BA<B
4 readdcl CAC+A
5 readdcl CBC+B
6 ltxrlt C+AC+BC+A<C+BC+A<C+B
7 4 5 6 syl2an CACBC+A<C+BC+A<C+B
8 7 3impdi CABC+A<C+BC+A<C+B
9 8 3coml ABCC+A<C+BC+A<C+B
10 1 3 9 3imtr4d ABCA<BC+A<C+B