Metamath Proof Explorer


Theorem axprlem3

Description: Lemma for axpr . Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023)

Ref Expression
Assertion axprlem3 zwwzsspif-nnsw=xw=y

Proof

Step Hyp Ref Expression
1 nfv zif-nnsw=xw=y
2 1 axrep4 szwif-nnsw=xw=yw=zzwwzsspif-nnsw=xw=y
3 ax6evr zx=z
4 ifptru nnsif-nnsw=xw=yw=x
5 4 biimpd nnsif-nnsw=xw=yw=x
6 equtrr x=zw=xw=z
7 5 6 sylan9r x=znnsif-nnsw=xw=yw=z
8 7 alrimiv x=znnswif-nnsw=xw=yw=z
9 8 expcom nnsx=zwif-nnsw=xw=yw=z
10 9 eximdv nnszx=zzwif-nnsw=xw=yw=z
11 3 10 mpi nnszwif-nnsw=xw=yw=z
12 ax6evr zy=z
13 ifpfal ¬nnsif-nnsw=xw=yw=y
14 13 biimpd ¬nnsif-nnsw=xw=yw=y
15 14 adantl y=z¬nnsif-nnsw=xw=yw=y
16 simpl y=z¬nnsy=z
17 equtr w=yy=zw=z
18 15 16 17 syl6ci y=z¬nnsif-nnsw=xw=yw=z
19 18 alrimiv y=z¬nnswif-nnsw=xw=yw=z
20 19 expcom ¬nnsy=zwif-nnsw=xw=yw=z
21 20 eximdv ¬nnszy=zzwif-nnsw=xw=yw=z
22 12 21 mpi ¬nnszwif-nnsw=xw=yw=z
23 11 22 pm2.61i zwif-nnsw=xw=yw=z
24 2 23 mpg zwwzsspif-nnsw=xw=y