Description: Lemma for axpr . The first element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023) (Revised by BJ, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | axprlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axprlem1 | |
|
2 | 1 | bm1.3ii | |
3 | nfa1 | |
|
4 | nfv | |
|
5 | 3 4 | nfan | |
6 | biimp | |
|
7 | 6 | alimi | |
8 | df-ral | |
|
9 | 7 8 | sylibr | |
10 | sp | |
|
11 | 9 10 | mpan9 | |
12 | 11 | adantrr | |
13 | ax-nul | |
|
14 | nfa1 | |
|
15 | sp | |
|
16 | 15 | biimprd | |
17 | 14 16 | eximd | |
18 | 13 17 | mpi | |
19 | simprr | |
|
20 | ifptru | |
|
21 | 20 | biimpar | |
22 | 18 19 21 | syl2an2r | |
23 | 12 22 | jca | |
24 | 23 | expcom | |
25 | 5 24 | eximd | |
26 | 2 25 | mpi | |