Metamath Proof Explorer


Theorem axprlem4

Description: Lemma for axpr . The first element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023) (Revised by BJ, 13-Aug-2023)

Ref Expression
Assertion axprlem4 snst¬tnspw=xsspif-nnsw=xw=y

Proof

Step Hyp Ref Expression
1 axprlem1 snt¬tnns
2 1 bm1.3ii snnst¬tn
3 nfa1 ssnst¬tnsp
4 nfv sw=x
5 3 4 nfan ssnst¬tnspw=x
6 biimp nst¬tnnst¬tn
7 6 alimi nnst¬tnnnst¬tn
8 df-ral nst¬tnnnst¬tn
9 7 8 sylibr nnst¬tnnst¬tn
10 sp snst¬tnspnst¬tnsp
11 9 10 mpan9 nnst¬tnsnst¬tnspsp
12 11 adantrr nnst¬tnsnst¬tnspw=xsp
13 ax-nul nt¬tn
14 nfa1 nnnst¬tn
15 sp nnst¬tnnst¬tn
16 15 biimprd nnst¬tnt¬tnns
17 14 16 eximd nnst¬tnnt¬tnnns
18 13 17 mpi nnst¬tnnns
19 simprr nnst¬tnsnst¬tnspw=xw=x
20 ifptru nnsif-nnsw=xw=yw=x
21 20 biimpar nnsw=xif-nnsw=xw=y
22 18 19 21 syl2an2r nnst¬tnsnst¬tnspw=xif-nnsw=xw=y
23 12 22 jca nnst¬tnsnst¬tnspw=xspif-nnsw=xw=y
24 23 expcom snst¬tnspw=xnnst¬tnspif-nnsw=xw=y
25 5 24 eximd snst¬tnspw=xsnnst¬tnsspif-nnsw=xw=y
26 2 25 mpi snst¬tnspw=xsspif-nnsw=xw=y