Metamath Proof Explorer


Theorem axreplem

Description: Lemma for axrep2 and axrep3 . (Contributed by BJ, 6-Aug-2022)

Ref Expression
Assertion axreplem x=yuφvψwzxχuφvψwzyχ

Proof

Step Hyp Ref Expression
1 elequ2 x=yzxzy
2 1 anbi1d x=yzxχzyχ
3 2 exbidv x=ywzxχwzyχ
4 3 bibi2d x=yψwzxχψwzyχ
5 4 albidv x=yvψwzxχvψwzyχ
6 5 imbi2d x=yφvψwzxχφvψwzyχ
7 6 exbidv x=yuφvψwzxχuφvψwzyχ