Metamath Proof Explorer


Theorem ballotlem5

Description: If A is not ahead throughout, there is a k where votes are tied. (Contributed by Thierry Arnoux, 1-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
Assertion ballotlem5 COEk1M+NFCk=0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 eldifi COECO
9 1 a1i COEM
10 2 a1i COEN
11 9 10 nnaddcld COEM+N
12 1 2 3 4 5 6 ballotlemodife COECOi1M+NFCi0
13 12 simprbi COEi1M+NFCi0
14 2 nnrei N
15 1 nnrei M
16 14 15 posdifi N<M0<MN
17 7 16 mpbi 0<MN
18 1 2 3 4 5 ballotlemfmpn COFCM+N=MN
19 8 18 syl COEFCM+N=MN
20 17 19 breqtrrid COE0<FCM+N
21 1 2 3 4 5 8 11 13 20 ballotlemfc0 COEk1M+NFCk=0