Metamath Proof Explorer


Theorem basprssdmsets

Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses basprssdmsets.s φSStructX
basprssdmsets.i φIU
basprssdmsets.w φEW
basprssdmsets.b φBasendxdomS
Assertion basprssdmsets φBasendxIdomSsSetIE

Proof

Step Hyp Ref Expression
1 basprssdmsets.s φSStructX
2 basprssdmsets.i φIU
3 basprssdmsets.w φEW
4 basprssdmsets.b φBasendxdomS
5 4 orcd φBasendxdomSBasendxI
6 elun BasendxdomSIBasendxdomSBasendxI
7 5 6 sylibr φBasendxdomSI
8 snidg IUII
9 2 8 syl φII
10 9 olcd φIdomSII
11 elun IdomSIIdomSII
12 10 11 sylibr φIdomSI
13 7 12 prssd φBasendxIdomSI
14 structex SStructXSV
15 1 14 syl φSV
16 setsdm SVEWdomSsSetIE=domSI
17 15 3 16 syl2anc φdomSsSetIE=domSI
18 13 17 sseqtrrd φBasendxIdomSsSetIE