Metamath Proof Explorer


Theorem bi2anan9r

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996)

Ref Expression
Hypotheses bi2an9.1 φψχ
bi2an9.2 θτη
Assertion bi2anan9r θφψτχη

Proof

Step Hyp Ref Expression
1 bi2an9.1 φψχ
2 bi2an9.2 θτη
3 1 2 bi2anan9 φθψτχη
4 3 ancoms θφψτχη