Metamath Proof Explorer


Theorem biadanii

Description: Inference associated with biadani . Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011) (Proof shortened by BJ, 4-Mar-2023)

Ref Expression
Hypotheses biadani.1 φψ
biadanii.2 ψφχ
Assertion biadanii φψχ

Proof

Step Hyp Ref Expression
1 biadani.1 φψ
2 biadanii.2 ψφχ
3 1 biadani ψφχφψχ
4 2 3 mpbi φψχ