Metamath Proof Explorer


Theorem bitsf1o

Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn . (Contributed by Mario Carneiro, 8-Sep-2016)

Ref Expression
Assertion bitsf1o bits0:01-1 onto𝒫0Fin

Proof

Step Hyp Ref Expression
1 bitsf1ocnv bits0:01-1 onto𝒫0Finbits0-1=x𝒫0Finnx2n
2 1 simpli bits0:01-1 onto𝒫0Fin