Metamath Proof Explorer


Theorem bitsfval

Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsfval NbitsN=m0|¬2N2m

Proof

Step Hyp Ref Expression
1 fvoveq1 n=Nn2m=N2m
2 1 breq2d n=N2n2m2N2m
3 2 notbid n=N¬2n2m¬2N2m
4 3 rabbidv n=Nm0|¬2n2m=m0|¬2N2m
5 df-bits bits=nm0|¬2n2m
6 nn0ex 0V
7 6 rabex m0|¬2N2mV
8 4 5 7 fvmpt NbitsN=m0|¬2N2m