Metamath Proof Explorer


Theorem bj-0nelmpt

Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020)

Ref Expression
Assertion bj-0nelmpt ¬xAB

Proof

Step Hyp Ref Expression
1 0nelopab ¬xy|xAy=B
2 df-mpt xAB=xy|xAy=B
3 2 eqcomi xy|xAy=B=xAB
4 3 eleq2i xy|xAy=BxAB
5 1 4 mtbi ¬xAB