Metamath Proof Explorer


Theorem bj-0nelmpt

Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020)

Ref Expression
Assertion bj-0nelmpt ¬ x A B

Proof

Step Hyp Ref Expression
1 0nelopab ¬ x y | x A y = B
2 df-mpt x A B = x y | x A y = B
3 2 eqcomi x y | x A y = B = x A B
4 3 eleq2i x y | x A y = B x A B
5 1 4 mtbi ¬ x A B