Metamath Proof Explorer


Theorem bj-2uplex

Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-2uplex ABVAVBV

Proof

Step Hyp Ref Expression
1 bj-pr21val pr1AB=A
2 bj-pr1ex ABVpr1ABV
3 1 2 eqeltrrid ABVAV
4 bj-pr22val pr2AB=B
5 bj-pr2ex ABVpr2ABV
6 4 5 eqeltrrid ABVBV
7 3 6 jca ABVAVBV
8 df-bj-2upl AB=A1𝑜×tagB
9 bj-1uplex AVAV
10 9 biimpri AVAV
11 snex 1𝑜V
12 bj-xtagex 1𝑜VBV1𝑜×tagBV
13 11 12 ax-mp BV1𝑜×tagBV
14 unexg AV1𝑜×tagBVA1𝑜×tagBV
15 10 13 14 syl2an AVBVA1𝑜×tagBV
16 8 15 eqeltrid AVBVABV
17 7 16 impbii ABVAVBV