Metamath Proof Explorer


Theorem bj-2upln1upl

Description: A couple is never equal to a monuple. It is in order to have this "non-clashing" result that tagging was used. Without tagging, we would have (| A , (/) |) = (| A |) . Note that in the context of Morse tuples, it is natural to define the 0-tuple as the empty set. Therefore, the present theorem together with bj-1upln0 and bj-2upln0 tell us that an m-tuple may equal an n-tuple only when m = n, at least for m, n <= 2, but this result would extend as soon as we define n-tuples for higher values of n. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-2upln1upl A B C

Proof

Step Hyp Ref Expression
1 xpundi × tag A tag C = × tag A × tag C
2 1 difeq2i 1 𝑜 × tag B × tag A tag C = 1 𝑜 × tag B × tag A × tag C
3 incom × tag A tag C 1 𝑜 × tag B = 1 𝑜 × tag B × tag A tag C
4 xp01disjl × tag A tag C 1 𝑜 × tag B =
5 3 4 eqtr3i 1 𝑜 × tag B × tag A tag C =
6 disjdif2 1 𝑜 × tag B × tag A tag C = 1 𝑜 × tag B × tag A tag C = 1 𝑜 × tag B
7 5 6 ax-mp 1 𝑜 × tag B × tag A tag C = 1 𝑜 × tag B
8 1oex 1 𝑜 V
9 8 snnz 1 𝑜
10 bj-tagn0 tag B
11 9 10 pm3.2i 1 𝑜 tag B
12 xpnz 1 𝑜 tag B 1 𝑜 × tag B
13 11 12 mpbi 1 𝑜 × tag B
14 7 13 eqnetri 1 𝑜 × tag B × tag A tag C
15 2 14 eqnetrri 1 𝑜 × tag B × tag A × tag C
16 0pss 1 𝑜 × tag B × tag A × tag C 1 𝑜 × tag B × tag A × tag C
17 15 16 mpbir 1 𝑜 × tag B × tag A × tag C
18 ssun2 × tag C × tag A × tag C
19 sscon × tag C × tag A × tag C 1 𝑜 × tag B × tag A × tag C 1 𝑜 × tag B × tag C
20 18 19 ax-mp 1 𝑜 × tag B × tag A × tag C 1 𝑜 × tag B × tag C
21 ssun2 1 𝑜 × tag B × tag A 1 𝑜 × tag B
22 ssdif 1 𝑜 × tag B × tag A 1 𝑜 × tag B 1 𝑜 × tag B × tag C × tag A 1 𝑜 × tag B × tag C
23 21 22 ax-mp 1 𝑜 × tag B × tag C × tag A 1 𝑜 × tag B × tag C
24 20 23 sstri 1 𝑜 × tag B × tag A × tag C × tag A 1 𝑜 × tag B × tag C
25 df-bj-2upl A B = A 1 𝑜 × tag B
26 df-bj-1upl A = × tag A
27 26 uneq1i A 1 𝑜 × tag B = × tag A 1 𝑜 × tag B
28 25 27 eqtri A B = × tag A 1 𝑜 × tag B
29 28 difeq1i A B × tag C = × tag A 1 𝑜 × tag B × tag C
30 24 29 sseqtrri 1 𝑜 × tag B × tag A × tag C A B × tag C
31 df-bj-1upl C = × tag C
32 31 difeq2i A B C = A B × tag C
33 30 32 sseqtrri 1 𝑜 × tag B × tag A × tag C A B C
34 psssstr 1 𝑜 × tag B × tag A × tag C 1 𝑜 × tag B × tag A × tag C A B C A B C
35 17 33 34 mp2an A B C
36 0pss A B C A B C
37 35 36 mpbi A B C
38 difn0 A B C A B C
39 37 38 ax-mp A B C