Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Adding ax-13
bj-cbv3ta
Next ⟩
bj-cbv3tb
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-cbv3ta
Description:
Closed form of
cbv3
.
(Contributed by
BJ
, 2-May-2019)
Ref
Expression
Assertion
bj-cbv3ta
⊢
∀
x
∀
y
x
=
y
→
φ
→
ψ
→
∀
y
∃
x
ψ
→
ψ
∧
∀
x
φ
→
∀
y
φ
→
∀
x
φ
→
∀
y
ψ
Proof
Step
Hyp
Ref
Expression
1
bj-spimt2
⊢
∀
x
x
=
y
→
φ
→
ψ
→
∃
x
ψ
→
ψ
→
∀
x
φ
→
ψ
2
1
imp
⊢
∀
x
x
=
y
→
φ
→
ψ
∧
∃
x
ψ
→
ψ
→
∀
x
φ
→
ψ
3
2
alanimi
⊢
∀
y
∀
x
x
=
y
→
φ
→
ψ
∧
∀
y
∃
x
ψ
→
ψ
→
∀
y
∀
x
φ
→
ψ
4
bj-hbalt
⊢
∀
x
φ
→
∀
y
φ
→
∀
x
φ
→
∀
y
∀
x
φ
5
sylgt
⊢
∀
y
∀
x
φ
→
ψ
→
∀
x
φ
→
∀
y
∀
x
φ
→
∀
x
φ
→
∀
y
ψ
6
3
4
5
syl2im
⊢
∀
y
∀
x
x
=
y
→
φ
→
ψ
∧
∀
y
∃
x
ψ
→
ψ
→
∀
x
φ
→
∀
y
φ
→
∀
x
φ
→
∀
y
ψ
7
6
expimpd
⊢
∀
y
∀
x
x
=
y
→
φ
→
ψ
→
∀
y
∃
x
ψ
→
ψ
∧
∀
x
φ
→
∀
y
φ
→
∀
x
φ
→
∀
y
ψ
8
7
alcoms
⊢
∀
x
∀
y
x
=
y
→
φ
→
ψ
→
∀
y
∃
x
ψ
→
ψ
∧
∀
x
φ
→
∀
y
φ
→
∀
x
φ
→
∀
y
ψ